منابع مشابه
Functions Preserving Matrix Groups and Iterations for the Matrix Square Root
For which functions f does A ∈ G ⇒ f(A) ∈ G when G is the matrix automorphism group associated with a bilinear or sesquilinear form? For example, if A is symplectic when is f(A) symplectic? We show that group structure is preserved precisely when f(A) = f(A) for bilinear forms and when f(A) = f(A) for sesquilinear forms. Meromorphic functions that satisfy each of these conditions are characteri...
متن کاملMatrix Representations of Nonlinear Equation Iterations—Application to Parallel Computation
A matrix representation of iterative methods is presented which includes almost all those based on polynomial methods. A simple lemma and corollaries are established which show that the order of convergence of the iteration is the spectral radius of the matrix representation. A number of old and new methods, particularly those adapted to parallel computation, are analyzed using this representat...
متن کاملFrom Potential Theory to Matrix Iterations in Six Steps
The theory of the convergence of Krylov subspace iterations for linear systems of equations (conjugate gradients, biconjugate gradients, GMRES, QMR, Bi-CGSTAB, and so on) is reviewed. For a computation of this kind, an estimated asymptotic convergence factor ρ ≤ 1 can be derived by solving a problem of potential theory or conformal mapping. Six approximations are involved in relating the actual...
متن کاملPhase diagram of matrix compressed sensing
In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bi...
متن کاملOn Linear Asynchronous Iterations When the Spectral Radius of the Modulus Matrix Is One on Linear Asynchronous Iterations When the Spectral Radius of the Modulus Matrix Is One
A classical result on linear asynchronous iterations states that convergence occurs if and only if the spectral radius of the modulus matrix is less than 1. The present paper shows that if one introduces very mild restrictions on the admissible asynchronous processes, one gets convergence for a larger class of matrices for which the spectral radius of the modulus matrix is allowed to be equal t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Mathematical Logic
سال: 2012
ISSN: 0933-5846,1432-0665
DOI: 10.1007/s00153-012-0315-6